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Assumptions As stated in the main text, our assumptions are:

1. Each individual is infected at most once.

2. Each infection is initiated by a single pathogen. Following infection,
within-host pathogen evolution occurs and the evolved pathogens are
transmitted to others.

3. The order in which infections (or onsets of infectiousness) occurred is
known.

4. We have at least one pathogen sequence from each infected individual,
and these sequences are linked in a rooted phylogeny. The root of this
phylogeny has a parent node r0.

5. Each node in the phylogeny represents a pathogen that had a host, which
is also the “host” of the node. A parent-child relationship between nodes
with different hosts represents a direct transmission of infection from the
host of the parent to the host of the child. The node r0 has a host outside
the observed population.

Lemma 1. The nodes hosted by an infected individual form a subtree of the
phylogenetic tree.

Proof. This is trivial if i hosts only one node, so assume i hosts distinct nodes
z and z′. Since the phylogeny is a rooted tree, there is a unique path from z to
the root node r0. Let x be the first node on this path such that host(x) 6= i.
Similarly, let x′ be the first node on the path from z′ to r0 such that host(x′) 6= i.
If x′ 6= x, there are two possibilities:

1. If host(x′) 6= host(x), then i was infected by two different individuals,
violating Assumption 1.

2. If host(x′) = host(x), then i was infected with two distinct pathogens,
violating Assumption 2.
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Figure 1: Illustration for Lemma 1 and Theorem 1. The left shows the paths
from z and z′ to x and x′, respectively. On the right is the situation after we
prove that x′ = x. Solid lines indicate direct parent-child relationships, and
dotted lines indicate paths of length ≥ 0. The infector of i must be host(x).

Therefore, x′ = x. By definition, x has at least one child y such that host(y) = i.
Since host(x) infected i exactly once, there can be at most one such child of x.
If z is any node hosted by i, there is a path from z to y that consists entirely of
nodes hosted by i. Therefore, the nodes hosted by i form a phylogenetic subtree
rooted at y. See Figure 1.

Theorem 1. A phylogeny with known interior node hosts implies a unique
transmission tree.

Proof. Choose an infected individual i. By Lemma 1, the nodes hosted by i
form a subtree of the phylogeny. Let y be the root of this subtree and let x =
parent(y). Since host(x) 6= i, host(x) infected i by Assumption 5. Therefore,
the infector of each i is uniquely determined by the phylogeny and the interior
node hosts.

Lemma 2. For any node x, host(x) = first(x) or host(x) infected first(x).

Proof. Let j = first(x), and let rj be the root of the subtree consisting of nodes
hosted by j. There are three cases:

1. If rj = x, then host(x) = host(rj) = j.

2. If rj 6∈ Cx, let `j be a leaf in Cx hosted by j. The phylogeny is a tree and
x is the root of the clade Cx, so any path from a node outside Cx to a
node in Cx must include x. Since all nodes on the path from rj to `j are
hosted by j, host(x) = j. See the left side of Figure 2.
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Figure 2: Illustrations for Lemma 2. The left shows Case 2, where rj is outside
Cx and host(x) = j. The right shows Case 3, where rj is inside Cx and host(x) =
i, where i is the infector of j. As in Figure 1, solid lines indicate parent-child
relationships and dotted lines indicate paths of length ≥ 0.

3. If rj ∈ Cx and rj 6= x, let i = host
(
parent(rj)

)
be the infector of j.

(a) If i = 0, then i = host(r0).

(b) If i 6= 0, then i is the host of a leaf `i. Since i was infected before j,
`i must be outside Cx.

Either way, there is a path from node y outside Cx to parent(rj) that
consists of nodes hosted by i. Since parent(rj) ∈ Cx, this path includes x
so host(x) = i. See the right side of Figure 2.

Therefore, host(x) = j or host(x) = vj , where j = first(x).

Theorem 2. A transmission tree corresponds to at most one possible assign-
ment of interior node hosts in a phylogeny.

Proof. Choose an interior node x of the phylogeny Φ and assume the transmis-
sion tree v is known. If first(y) = first(x) for all children y of x, then each
clade rooted at a child of x contains a leaf hosted by x, so host(x) = first(x)
by Lemma 1. Now suppose there is a child y of x such that first(y) 6= first(x).
By Lemma 2 applied to node x, host(x) = vfirst(y). Thus, host(x) is uniquely
determined by first(y) and vfirst(y) for all children y of x. Since first(y) is deter-
mined by Φ and vfirst(y) is determined by v, there is at most one assignment of
interior node hosts in Φ that will produce v.

Lemma 3. If x is an interior node, host(x) = first(x) or host(x) = host
(
parent(x)

)
.
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Proof. Suppose host(y) 6= first(y). Then host(y) infected first(y) by Lemma 2.
Since the nodes hosted by host(y) form a subtree by Lemma 1 and host(y) is
the host of a leaf outside Cy, we must have host(x) = host(y).

Lemma 4. If x is an interior node with child y in the phylogeny, then

host(x) ∈ D∗y =

{
Dy if first(y) 6∈ Dy,

Dy ∪ Vfirst(y) if first(y) ∈ Dy.
(1)

Proof. By Lemma 3, either host(y) = first(y) or host(y) = host(x). We consider
two cases:

1. If first(y) 6∈ Dy, then host(y) = host(x) so host(x) ∈ Dy.

2. If first(y) ∈ Dy, suppose host(x) 6∈ Dy. By Lemma 3, host(y) = first(y).
By Assumption 5, host(x) infected first(y). Thus, host(x) ∈ Dy ∪Vfirst(y).

Therefore, host(x) ∈ D∗y as defined in equation (1).

Theorem 3. For any interior node x in the phylogeny,

Dx =
⋂

y∈children(x)

D∗y, (2)

where children(x) denotes the children of x.

Proof. Since Lemma 4 holds for each child of x, we have Dx ⊆
⋂

y D
∗
y. Now

suppose h ∈
⋂

y D
∗
y. When h ∈ Dy, there is at least one possible transmission

tree within clade Cy that can be generated with host(y) = h. When h 6∈ Dy,
then we must have h ∈ Vfirst(y) and first(y) ∈ Dy. For each child y of x, set

host(y) =

{
h if h ∈ Dy,

first(y) if h 6∈ Dy.
(3)

Using this choice of host(y), we can generate a possible transmission tree within
clade Cy for each child y of x. If host(y) = h, this transmission tree is rooted at
h. Otherwise, it is rooted at first(y) and we can add an edge from h to first(y)
because h ∈ Vfirst(y). These transmission trees rooted at h can be combined into
a transmission tree within Cx that can be generated with host(x) = h. Thus⋂

y D
∗
y ⊆ Dx, so the sets must be equal.

Theorem 4. Hx = Ax ∩Dx.

Proof. Since Dx contains all nodes that satisfy the descendant constraints, Hx ⊆
Dx. By Lemma 3, Hx ⊆ Ax. Therefore, Hx ⊆ Ax∩Dx. Now choose h ∈ Ax∩Dx.
Since h ∈ Dx, there is at least one possible transmission tree vx within Cx that
is rooted at h and has an edge ending in each member of Lx\{h}. Since h ∈ Ax,
there are two cases:
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1. If h ∈ Hparent(x), there is at least one possible transmission tree v0 pro-

duced when host
(
parent(x)

)
= h.

2. If h 6∈ Hparent(x), then h = first(x). Let g = host
(
parent(x)

)
. By

Lemma 3, host(x) = g or host(x) = h. If host(x) = g, then g infected h by
Lemma 2. If host(x) = h, then g infected h by Assumption 5. Therefore,
g ∈ Vh. Since g ∈ Hparent(x), we can set host

(
parent(x)

)
= g and generate

possible transmission tree v0 that has an edge from g to h.

For each i ∈ Lx \ {h}, replace its incoming edge in v0 with its incoming edge in
vx. This generates a possible transmission tree v1 that can be generated when
host(x) = h, so h ∈ Hx. Thus Ax ∩Dx ⊆ Hx, so the sets must be equal.

Input: Rooted phylogeny Φ and epidemiologic data
Output: Hx for each node x of Φ
for node x in postorder traversal of Φ do

if x is a leaf then Dx = {host(x)};
else Dx = ∩y∈children(x)D

∗
y, where D∗y is defined in equation (1);

end
for node x in preorder traversal of Φ do

if x = r0 then Hx = {0};
else Hx = Dx ∩Ax, where Ax = Hparent(x) ∪ {first(x)};

end
Algorithm 1: Finding host sets.

Input: Rooted phylogeny Φ with nonempty Hx for each node x
Output: Transmission tree v simultaneously consistent with Φ and

epidemiologic data
for node x in preorder traversal of Φ do

if x = r0 then set host(x) = 0;
else

w = parent(x);
choose host(x) ∈ Hx ∩ {host(w),first(x)};
if host(x) 6= host(w) then

add edge host(w)→ host(x) to v, adding nodes as necessary
end

end

end
Algorithm 2: Generating transmission trees.

Theorem 5. Given a pathogen phylogeny Φ that is topologically consistent with
the epidemiologic data, a transmission tree v is possible if and only if it can be
generated using Algorithm 2.
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Proof. If v is a transmission tree simultaneously consistent with the epidemio-
logic data and Φ, then host(x) ∈ Hx for each node x of Φ. Choose node x 6= r0

and let w = parent(x). By Lemma 3, host(x) ∈ {host(w),first(x)}. There-
fore, host(x) ∈ Hx ∩ {host(w),first(x)}. Since this is true for each such x, it is
possible to generate v using Algorithm 2. Now suppose v a transmission tree
generated by Algorithm 2. Choose a node x 6= r0 in Φ and let w = parent(x).
There are two cases:

1. If host(x) = host(w), there is no corresponding edge in v.

2. If host(x) 6= host(w), then host(x) = first(x) so host(w) infected first(x)
by Assumption 5. Assume host(w) 6∈ Vhost(x). Then host(w) ∈ Dx by
equation (1). Since host(w) ∈ Hw ⊆ Ax, we have host(w) ∈ Hx. But then
host(w) infected first(x) by Lemma 2, which is a contradiction. Thus
host(w) ∈ Vfirst(x), so the edge host(w) → first(x) is consistent with the
epidemiologic data.

Since each edge in the v is consistent with the epidemiologic data, v is a possible
transmission tree.

Input: Rooted phylogeny Φ with known host(x) for each node x
Output: Branching time tx for each node x
for node x in postorder traversal of Φ do

if x is a leaf then set tx to be the time pathogen x was sampled;
else

tmax = miny∈children(x) ty;
choose tx ∈ (thost(x), tmax);

end

end
Algorithm 3: Assigning branching times.

Theorem 6. If a transmission tree is generated using Algorithm 2, then Algo-
rithm 3 assigns a valid branching time to each internal node of the phylogeny.
Any possible assignment of branching times can be generated this way.

Proof. We must show that thost(x) < tmax so tx is chosen from a nonempty
interval. For each child y of x, we have two posibilities:

1. If host(y) = host(x), then ty > thost(x) by construction.

2. If host(y) 6= host(x), then host(y) = first(y) by Lemma 3 so host(x)
infected first(y) by Assumption 5. Thus, thost(x) < thost(y) < ty.

Therefore, thost(x) < ty for all y so thost(x) < tmax and the algorithm will success-
fully find a branching time for each interior node x. Now suppose each interior
node has been assigned a branching time tx. If we traverse the phylogeny in
postorder, we must have tx ∈ (thost(x), tmax) at each interior node x, so these
times could be assigned using Algorithm 3.
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